POSTER: A Test Infrastructure for Self-Adaptive
Software Systems

Eric Kilmer, Timothy Braje, Dinara Doyle, Tim Meunier, Philip Zucker, Jeffrey Hughes,
Michael Depot, Mark Mazumder, George Baah, Karishma Chadha, Robert Cunningham
Lincoln Laboratory, Massachusetts Institute of Technology
244 Wood Street
Lexington, Massachusetts 02420-9108
{eric.kilmer,tbraje,timothy.meunier,philip.zucker,jeffrey.hughes,mike.depot,mazumder,rkc } @11.mit.edu

Abstract—Today’s software often outlives the hardware for
which it was initially designed. Autonomous systems in particular
are deployed into scenarios where resources change and sensors
degrade. In DARPA’s Building Resource Adaptable Software Sys-
tems (BRASS) program, eight performers, with three challenge
problems each, must develop software systems that dynamically
reconfigure in response to a perturbation in the operating envi-
ronment to successfully recover and continue normal operation.
There are a variety of systems ranging from autonomous robots
to embedded systems sensors to mobile and distributed systems.
Leveraging past programs as experience [1,2] and robust testing
techniques [3], we develop a generic infrastructure for testing
and evaluating all of these systems.

Our design and implementation of the testing infrastructure
leverages abstraction and automation. We generically generate
tests for each system using performer-defined parameters and
values with the ability to direct future tests to specific corners of
the parameter-value space. Using a safe, Haskell-derived REST
API [4] to communicate, tests are driven through a test harness
and sent to the test adaptor which interfaces with the system-
under-test. Since each system behaves differently, we factor out
common methods of the API into reusable components to produce
system-agnostic interaction models that can be easily adjusted to
system-specific features on a case-by-case basis. These interaction
models and communication endpoints are developed in a type-
safe way such that each challenge problem and test case are
typed; this prevents run-time errors by preventing challenge
problem logic and parameter mismatches. The results are then
rolled up into verdict graphs to visualize each scenario’s outcome
and link to the concrete arguments that were used.

With 24 different challenge problems, the need for organization
and abstraction is paramount. To prepare for the final code
delivery after almost a year of development time, we used
three risk reductions to 1) agree on a set of API messages
and their fields, 2) define reproducible execution environments
using Docker for Amazon Web Services, and 3) ensure the
systems execute a full test case using their defined interaction
model. We found that performers were constantly changing their
parameter fields and value ranges without necessarily updating

Approved for public release: distribution unlimited. This material is based
upon work supported by the Defense Advanced Research Projects Agency
under Air Force Contract No. FA8702—-15-D-0001. Any opinions, findings,
conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the Defense Advanced
Research Projects Agency. ©2018 Massachusetts Institute of Technology. De-
livered to the U.S. Government with Unlimited Rights, as defined in DFARS
Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice,
U.S. Government rights in this work are defined by DFARS 252.227-7013
or DFARS 252.227-7014 as detailed above. Use of this work other than as
specifically authorized by the U.S. Government may violate any copyrights
that exist in this work.

the documentation, which made API synchronization tedious
and sometimes error-prone. In fact, every performer made API
changes up to the deadlines of all risk reductions plus the final
code drop. In addition to reviewing the API changes four times
throughout Phase 2, we manually performed integration tests to
verify that the new changes were incorporated accurately.

For future tests and integration, we recommend using a
standard, language-agnostic API specification, like the OpenAPI
Specification!, where data types and REST endpoint implemen-
tations can be generated and synchronized accurately. Further-
more, the creation or existence of continuous integration tests can
pinpoint regressions in the end-to-end interactions. If we want to
go even further, the development or use of a language-agnostic
state machine specification can enabled verifiable descriptions
and implementation for each system’s interaction model.

We found that GitHub provided a sufficient asynchronous
platform for opening/resolving issues and questions regarding
the systems and test harness. This allowed everyone to point
exactly where in the code a question regarding implementation
could be referenced. However, for more complex issues, face-to-
face or phone call interactions provided the best turnaround and
least ambiguity for issue resolution. When deploying performer’s
systems, Amazon’s Elastic Container Service (ECS) allowed us
to efficiently manage and scale the number of tests run during
evaluation. Using docker containers meant that we could quickly
execute smoke-tests locally, and once our smoke-tests passed, we
were confident that, given the correct amount of resources, we
could execute a large number of tests at scale on ECS. With
respect to our development experience, the strong, statically typed
compiler for Haskell, The Glasgow Haskell Compiler, afforded
us a pleasant development environment where we could safely
integrate new features and refactor with ease and confidence.

REFERENCES

[1] L. M. Rossey, R. K. Cunningham, D. J. Fried, J. C. Rabek, R. P.
Lippmann, J. W. Haines, and M. A. Zissman, “Lariat: Lincoln adaptable
real-time information assurance testbed,” in Proceedings, IEEE Aerospace
Conference, vol. 6, 2002, pp. 6-2671-2676, 6-2678-6-2682 vol.6.

[2] C. V. Wright, C. Connelly, T. Braje, J. C. Rabek, L. M. Rossey, and R. K.
Cunningham, “Generating client workloads and high-fidelity network
traffic for controllable, repeatable experiments in computer security,”
in Recent Advances in Intrusion Detection, S. Jha, R. Sommer, and
C. Kreibich, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 218-237.

[3] S. Peisert and M. Bishop, “How to design computer security experiments,”
in Fifth World Conference on Information Security Education, L. Futcher
and R. Dodge, Eds. Boston, MA: Springer US, 2007, pp. 141-148.

[4] M. Mazumder and T. Braje, “Safe client/server web development with
haskell,” in 2016 IEEE Cybersecurity Development (SecDev), Nov 2016,
pp. 150-150.

Uhttps://www.openapis.org/



