
POSTER: Automatic Patch Generation for Security
Functional Vulnerabilities with GAN

Ya Xiao, Danfeng (Daphne) Yao
Department of Computer Science, Virginia Tech

{yax99, danfeng} @vt.edu

Abstract—Patching vulnerabilities is not an easy work for
developers without corresponding expertise. Our ongoing work
pays a special attention to those complicated bugs which cripple
security mechanism due to misconfiguration. By applying an
overall pattern classifier and parallel GANs, we aim to develop
a system which incorporates the automatic diagnosis function
to generate patches for vulnerable code snippets as well as the
intelligible property which helps the developer to understand
the intention of these code snippets. This work is still ongoing.
Therefore, complete experiment results are not available yet.

I. INTRODUCTION
Most security incidents have relation with software vul-

nerabilities [1]. Among them, vulnerabilities caused by mis-
configuration or misuse in security functional code count
non-negligible part in CVE database. For example, there are
vulnerability types like CWE-312 with the description “Clear-
text Storage of Sensitive Information”, CWE-325 with the
description “Missing Required Cryptographic Step”. However,
existing automatic patch generation systems [2] [3] pay few
attention on them. One reason is that it is hard for those
approaches to search complicated fixes more than one line
which are often needed in these cases. Researches [4]–[6]
applying deep learning techniques is also emerging in this field
but also limited to some simple one-line bugs. To handle these
more complicated vulnerabilities, there are several common
challenges: First, more semantic information is required to be
caught so that the tool can deal with the security function
of code snippets correctly. This requirement improves the
difficulty of embedding a program in a suitable way. Many
existing program embedding ways like directly embedding it
from a token string of a program may not work. Second,
training a good model to generate correct patches is a so
complicated task that may require a massive amount of training
data, which increases the difficulty to collect dataset and also
means extremely costly in the training process.

II. FRAMEWORK
In our works, we incorporate the intelligible property by

leveraging the unique characteristic of those security func-
tional codes. That is, they often have some common intentions.
Specifically, when establishing a secure connection, there
are some specific steps in TLS/SSL protocol, like cipher
suite negotiation, authentication, key exchange, application
data exchange. Code snippets with the same intention share
many commonalities. We call it a pattern here. Therefore,

we understand the code intention by a pattern classification
first. Then, we treat each pattern separately and apply deep
learning techniques to training parallel patch generators of
vulnerable code snippets for each pattern. This framework also
degrades the challenges of massive training data and elaborate
embedding design by properly breaking down a complicated
task into several simpler ones.

We apply Generative Adversarial Networks (GANs) [7] in
our automatic patch generation process. A discriminator to
distinguish code snippets into high-security level and low-
security level is pre-trained and a generator accepts low-
level code snippets and transfers it into high-security level
ones. During the adversarial training process, the discriminator
distinguishes the output of generator and high-security level
ones. The generator receives the judges from discriminator
as indicators to adjust its gradients until its outputs are
indistinguishable with high-security level codes.

The framework of our approach is as follows:

Figure 1: Framework of our approach

Compared with existing works for automatic patches gen-
erators, we expect this approach to realize new improve-
ments including highlighting more complicated and convert
vulnerabilities on security functional codes, incorporating vul-
nerabilities detection function as well as patches generation,
and intelligible property helping developers to understand the
codes.

REFERENCES

[1] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M. Bailey, F. Li,
N. Weaver, J. Amann, J. Beekman, M. Payer et al., “The matter of heart-



bleed,” in Proceedings of the 2014 Conference on Internet Measurement
Conference. ACM, 2014, pp. 475–488.

[2] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “Genprog: A generic
method for automatic software repair,” Ieee transactions on software
engineering, vol. 38, no. 1, p. 54, 2012.

[3] F. Long and M. Rinard, “Staged program repair with condition synthesis,”
in Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering. ACM, 2015, pp. 166–178.

[4] R. Gupta, S. Pal, A. Kanade, and S. Shevade, “Deepfix: Fixing common
c language errors by deep learning.” in AAAI, 2017, pp. 1345–1351.

[5] R. Gupta, A. Kanade, and S. Shevade, “Deep reinforcement learning
for programming language correction,” arXiv preprint arXiv:1801.10467,
2018.

[6] J. Harer, O. Ozdemir, T. Lazovich, C. P. Reale, R. L. Russell, L. Y. Kim,
and P. Chin, “Learning to repair software vulnerabilities with generative
adversarial networks,” arXiv preprint arXiv:1805.07475, 2018.

[7] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672–2680.


