
POSTER: Diversity for Software Resilience
Andrew S. Gearhart

The Johns Hopkins University
Applied Physics Laboratory
andrew.gearhart@jhuapl.edu

I. DIVERSITY FOR RESILIENCE

The current software “monoculture” presents a common
avenue of attack against all computers running the vulnerable
software [1]. Due to this concern, a taxonomy of software
diversity techniques has been developed (see Larsen et al. [2])
and researchers have applied diversity as a defensive strategy
to a range of attack types from SQL injection [3] to return-
oriented programming (ROP) [4]–[6]. Two key areas of open
research within the study of software diversity are (1) mea-
suring the impact of diversity and (2) application of software
diversity in n-variant systems to achieve cyber resilience.

Quantitative metrics to compare efficacy of software di-
versity strategies would optimally differentiate strategy types
and also correlate with actual attacker effort. For example,
doubling the distance between two diversity strategies with
such a metric might be directly correlated with a proportion-
ate increase in attacker effort to compromise a diversified
software population. However, approximating attacker effort
is a difficult problem due to the challenge of collecting
reliable measures of effort from a sufficient number of human
attackers. Many proxy approaches depend on a particular class
of attacks, such as comparing the number of ROP gadgets that
are shared between variants [7], [8]. These approaches have
begun to address the problem of evaluating diversity strategies,
but further investigation is required.

Second, software diversity can be used to protect a single
physical platform by running several variants of an application
simultaneously. This is known as n-variant execution [9], [10],
and resilience is assumed to be incurred via the inability
of common inputs to compromise the majority of variants.
A monitoring application is typically used to analyze the
system and behavior divergence of a portion of the variants
is considered indicative of a potential fault. Managing overall
performance, monitor design, and methods of detecting diver-
gence are open challenges for n-variant systems.

II. RECENT RESULTS

Our work focuses on differentiating diversity strategies and
investigating the practical implications of n-variant execution.
In particular, we explore methods of comparing diversity
strategies in a manner inspired by unstructured text analysis.
Specifically, we generate several types of feature vectors (raw
frequency counts, term frequency-inverse document frequency
(TF-IDF), and doc2vec [11]) from disassembled binaries and
evaluate these features (and a set of cluster-based distance met-
rics) for their ability to differentiate compiler-based diversity

Fig. 1. Comparing Diversity Strategies to baseline

TABLE I
OVERHEAD OF n-VARIANT EXECUTION FOR SPEC C/C++ BENCHMARKS.

# Instances Min (%) Max (%) Mean (%) Median (%)

2 2.91 20.04 7.45 6.85
3 4.90 35.61 14.36 11.67
4 8.29 55.74 22.44 15.90

strategies. This is accomplished by generating a set of variants
according to a particular diversity strategy, disassembling
and normalizing these binaries, and then generating doc2vec
representations. The resulting clusters can be compared to an
undiversified baseline using Euclidean distance, and a separate
distance value produced for each application in a benchmark
suite. Figure 1 uses this approach to compare six diversity
strategies (for details, see [7], [12]) over the GNU core utilities
(103 applications).1 We note that strategies that make small
changes to the input source code (e.g., random scheduling)
are most similar to the baseline, suggesting that this approach
is viable to differentiate diversity techniques.

In addition to our clustering work, we have developed
a prototype n-variant execution framework to aid further
experimentation and design space exploration. Running the
C/C++ SPEC benchmarks,2 this framework currently results
in a 16% runtime overhead when running four variants (Table
I). In the future, we intend to use this framework to run server
applications and potentially port it to embedded devices.

1http://www.gnu.org/s/coreutils
2https://spec.org/benchmarks.html



REFERENCES

[1] D. Geer, R. Bace, P. Gutmann, P. Metzger, C. P. Pfleeger, J. S.
Quarterman, and B. Schneier, “CyberInsecurity: The Cost of Monopoly,”
Computer & Communications Industry Association, Tech. Rep., Septem-
ber 2003.

[2] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “SoK: Automated
Software Diversity,” in 2014 IEEE Symposium on Security and Privacy,
May 2014, pp. 276–291.

[3] S. Rauti, J. Teuhola, and V. Leppänen, “Diversifying SQL to Pre-
vent Injection Attacks,” in Proceedings of the 2015 IEEE Trust-
com/BigDataSE/ISPA - Volume 01, ser. TRUSTCOM ’15, 2015, pp.
344–351.

[4] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. Davidson, “ILR:
Where’d My Gadgets Go?” in 2012 IEEE Symposium on Security and
Privacy, May 2012, pp. 571–585.

[5] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Smashing the
Gadgets: Hindering Return-Oriented Programming Using In-place Code
Randomization,” in 2012 IEEE Symposium on Security and Privacy,
May 2012, pp. 601–615.

[6] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, “Enhanced Operating
System Security Through Efficient and Fine-grained Address Space Ran-
domization,” in Proceedings of the 21st USENIX Security Symposium,
Oct. 2012, pp. 475–490.

[7] A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, and M. Franz,
“Profile-guided Automated Software Diversity,” in Proceedings of
the 2013 IEEE/ACM International Symposium on Code Generation
and Optimization, ser. CGO ’13, February 2013, pp. 1–11. [Online].
Available: http://dx.doi.org/10.1109/CGO.2013.6494997

[8] J. Coffman, D. M. Kelly, C. C. Wellons, and A. S. Gearhart, “ROP
Gadget Prevalence and Survival Under Compiler-based Binary Diver-
sification Schemes,” in Proceedings of the 2016 ACM Workshop on
Software PROtection, ser. SPRO ’16, 2016, pp. 15–26.

[9] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight,
A. Nguyen-Tuong, and J. Hiser, “N-Variant Systems: A Secretless
Framework for Security through Diversity,” in Proceedings of the 15th
USENIX Security Symposium, August 2006, pp. 105–120.

[10] P. Hosek and C. Cadar, “VARAN the Unbelievable: An Efficient
N-version Execution Framework,” in Proceedings of the Twentieth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’15. New York,
NY, USA: ACM, 2015, pp. 339–353. [Online]. Available: http:
//doi.acm.org/10.1145/2694344.2694390

[11] Q. Le and T. Mikolov, “Distributed Representations of Sentences and
Documents,” in Proceedings of the 31st International Conference on
Machine Learning, ser. ICML-14, 2014, pp. 1188–1196.

[12] P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin, “Obfuscator-LLVM:
Software Protection for the Masses,” in Proceedings of the 1st Interna-
tional Workshop on Software Protection, ser. SPRO ’15, May 2015, pp.
3–9.


