
POSTER: Extracting Anti-specifications from
Vulnerabilities for Program Hardening

Md Salman Ahmed, Danfeng (Daphne) Yao
Computer Science, Virginia Tech
{ahmedms, danfeng@vt.edu}@vt.edu

Haipeng Cai
Electrical Engineering and Computer Science

Washington State University
haipeng.cai@wsu.edu

Abstract—Understanding the stages or patterns of an offensive
exploit is very crucial for fixing security bugs in programs and
developing defenses. However, this is a challenging task and often
requires manual efforts. Thus, scalability is a major concern
for this task. In this work, we present a technique to extract
exploit patterns from vulnerable programs for hardening future
programs by utilizing the extracted exploit patterns.

The cat and mouse games between cyber attackers and
defenders have been prevalent for decades. In recent years,
attackers [3]–[5] proved their capabilities to bypass advanced
defenses including but not limited to Address Space Layout
Randomization (ASLR), Non-Executable (NX a.k.a. W⊕X),
and Control Flow Integrity (CFI). Often, the software
developers or security defenders understand the offensive
exploit techniques demonstrated in their software and develop
patches to harden those exploits. The understanding of the
exploit techniques is not a straightforward task and requires
manual efforts. However, the manual efforts are not scalable.
One way to solve the problem is to extract the exploit
techniques or patterns automatically and use these patterns
to screen and harden future programs. We call the exploit
patterns anti-specifications (or anti-specs in short) [6]. In
simple words, specifications are what a program should do
and anti-specs are what a program should not do. However, an
anti-specification has an impact down the road in a program.
For example, attackers can leverage an anti-specification to
hijack the control flow of a program or leak information. An
example of an anti-specification is unsanitized user input.

In this work, we develop a technique for extracting anti-
specs from real-world programs and build an anti-specification
database. This database is very useful. One of the uses of this
database is to screen a new input program against the anti-
specs from the database and harden the program to be immune
to the attack vectors (if any) by automatically patching the
program. However, the anti-specification extraction process
poses several challenges including accuracy, prioritization, and
scalability. Accuracy is required for preventing false alerts,
prioritization for identifying risky anti-specs, and scalability
for extracting anti-specs from millions of programs.

We design our approach by considering the challenges
described above. Our approach works in four stages. In stage
1 , we manually analyze 130+ vulnerabilities from 100+

vulnerable programs provided in The Defense Advanced
Research Projects Agency (DARPA)’s Cyber Grand Challenge
(CGC) [2]. In stage 2 , we manually extract anti-specs. We
generate new anti-specification knowledge using the existing
anti-specs in stage 3 . The purpose of stage 4 is to screen and
harden new input programs utilizing the extracted anti-specs.
However, stage 4 is out of the scope of this work.

Fig. 1. Three-tuple form of an anti-specification

We generalize the anti-specification extraction process in
stage 2 . The generalized extraction process works in four
steps. First, we identify the vulnerable function (provided by
CGC). Second, we trace back and locate the entry point of
the untrustworthy input. Third, we confirm that there is no
boundary checking/sanitization issue between the entry point
and the vulnerable function. Fourth, we identify the location
of downstream impact. The downstream impact is two types:
1) impact on the control flow (e.g., controlling eip) and 2)
impact on the data flow (similar to Heartbleed).

We extract an anti-specification for a vulnerability in
a three-tuple form as illustrated in Figure 1. Each anti-
specification covers untrustworthy user input (if any), lack
of boundary-checking or sanitization of user input, and the
impact of the lack of boundary-checking or sanitization on
the control/data flow. The three components in the three-tuple
form must be present in a vulnerability to be considered as
an anti-specification.

We are currently conducting a static analysis using angr
[1] for automatically extracting anti-specs. Through binary
analysis with angr, we start by identifying callsites of the user
input sources, check guards of the data retrieved at the callsites
through dominance analysis (i.e., computing backward if there
are any control dependencies of any reaching definitions at the
callsite), and propagate the impact of unguarded user input
access through forward data flow analysis (i.e., computing
forward any reachable uses of the definitions at the callsite).



ACKNOWLEDGMENT

This work is supported by DARPA/ONR Grant N66001-17-
C-4052.

REFERENCES

[1] angr. http://angr.io/. Last accessed August 8, 2018.
[2] The defense advanced research projects agency (darpa).

https://github.com/CyberGrandChallenge/samples. Last accessed
August 8, 2018.

[3] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, and D. Boneh. Hacking
blind. In Security and Privacy (SP), 2014 IEEE Symposium on, pages
227–242. IEEE, 2014.

[4] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross. Control-
flow bending: On the effectiveness of control-flow integrity. In USENIX
Security Symposium, pages 161–176, 2015.

[5] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.-R.
Sadeghi. Just-in-time code reuse: On the effectiveness of fine-grained
address space layout randomization. In Security and Privacy (SP), 2013
IEEE Symposium on, pages 574–588. IEEE, 2013.

[6] J. Vanegue. The automated exploitation grand challenge.
https://openwall.info/wiki/ media/people/jvanegue/files/aegc vanegue.pdf.
Last accessed August 8, 2018.


