Poster: Toward Secure & Serverless Trigger-Action Platforms

Pubali Datta', Tristan Morris?, Hayawardh Vijayakumarz, Michael Grace?, Adam Bates', Amir Rahmati>*
YWniversity of Illinois, Urbana-Champaign, *Samsung Research America, >Stony Brook University
{pdatta2,batesa} @illinois.edu, {t.morris,h.vijayakuma,m1.grace,amir.rahmati } @samsung.com, amir@cs.stonybrook.edu

The automation rules in popular trigger-action platforms
(TAP) (e.g.,IFTTT [1]]) are usually simple event-driven work-
flows, in form of “if [TRIGGER], then [ACTION]”. Users
compose these rules simply by stitching APIs exposed by var-
ious service providers connected to the trigger-action platform.
While TAPs enable users to easily integrate various services
together and cover simple cases that a regular user may grapple
with, they suffer from limitations that make them inadequate
for complex or security-sensitive settings: First, users of a
TAP neither have control over, nor knowledge of, how their
data are accessed or used by the workflows. This is especially
problematic as previous work has shown these systems to be
overprivileged [2]. Users must trust the workflow to execute
according to its advertised behavior and not abuse the over-
privilege. Second, existing platforms offer limited ability to
customize or create complex workflows. Users are limited to
predefined, single-stage workflows that they cannot extend in
arbitrary ways. These limitations make current platforms un-
suitable to deploy automation workflows in security sensitive
environments. In this work, we propose the design of Dromos,
a platform to overcome these shortcomings.

Design Goals. Dromos is designed to enable the following
functionalities. (1) Customizability: Dromos should provide
customizability by enabling creation of custom blackbox func-
tions and should support complex workflows. (2) Control
over Data: Dromos should provide user with fine-grained
control over permissions for their workflows. (3) Security:
Dromos should provide security guarantees on how user data
is being used on the platform. (4) Usability: Dromos should
maintain current TAP support for rapid and easy development
of trigger-action workflows and easy integration to third party
services to retain the ease-of-use. (5) Scalability: The trig-
ger-actions workflows developed should scale to thousands of
users simultaneously.

Design Sketch. Dromos consists of the following components
designed to meet the described goals.

Function repository: A database of triggers, actions, and
small functions which states their input, output and expected
behavior (handling of input-data) which can be used in creat-
ing trigger-action workflows. Much like the service-developers
in TAP, in Dromos function developers can create functions
(sometimes opaque to the platform) performing specific tasks
that can be stored in the function repository and published to
be used in any workflow by workflow creators.

Workflow creation: Dromos supports creation of complex
workflows, where workflow creators can use existing functions
from repository or custom functions and stitch them into a
workflow using the workflow creation mechanism. Workflow
creation is followed by static high level flow tracking on a
composed workflow and associating metadata of component

functions stored in the repository to compute fine-grained per-
missions required to execute the workflow. Users are presented
with these permissions at installation time of a workflow to
make an informed decision on using it. The function reposi-
tory and the workflow creation mechanism together achieves
customizable and rapid development of workflows.

Execution Engine: The execution engine deploys the entire
trigger-action workflow in a scalable way, enforces permis-
sion usage in the workflow, and provides secure isolation
between workflows. It uses serverless execution framework in
the background for execution. The serverless (Function-as-a-
Service) frameworks (AWS Lambda, OpenFaaS, OpenWhisk
etc) have recently gained popularity to execute event-driven
tasks on demand. These platforms enable a function to be
triggered by defined events or http requests and spin up a
container with the appropriate runtime environment to execute
the function. This contained execution of functions helps
achieve isolation to provide security guarantees. Serverless
frameworks automatically spawn multiple function instances
to scale to multiple events or requests. This feature makes
such frameworks perfect fit for Dromos to achieve scalability.
Implementation Challenges. We envision several challenges
in implementing Dromos: (1) Generating readable fine-grained
permissions required by a workflow from component function
metadata and source code (when available). (2) Even with
comprehensive list of permissions shown to the end-users, they
might not accept all permissions (required for workflow execu-
tion) presented and Dromos may have to support the workflow
execution with limited capabilities. (3) While serverless frame-
works offer auto-scaling and contained execution, there are
existing security concerns with them[3]], [4]. For performance
enhancement, many of these frameworks keep a pool of warm
containers ready to serve repeated and parallel invocations of
a function. This may cause cached data from one invoca-
tion to be leaked to future invocation of the same function.
Also, functions can spawn arbitrary child processes inside
containers leading to malicious behavior. Dromos solves such
issues by adding security extensions to serverless frameworks.
Dromos will implement a security shim around the function
which dynamically profile the invoked function for suspicious
behavior and provide proper sanitization and data-isolation
between invocations. (4) Dromos provides additional security
guarantees by allowing the workflow creators to define high
level information flow policies to govern the communication
between functions and by enforcing the policies dynamically
during workflow execution, thus providing better control over
data-usage.

We present the initial design of Dromos in this poster, that
overcomes limitations in existing TAPs and brings in strong
security guarantees about usage of data in the platform.



REFERENCES

[1] “IFTTT,” https://ifttt.com, 2017.

[2] E. Fernandes, A. Rahmati, J. Jung, and A. Prakash, “Decentralized action
integrity for trigger-action iot platforms,” in NDSS, 2018.

[3] A. Krug and G. Jones, “Hacking serverless runtimes,” Blackhat 2017.

[4] “Gone in 60 Milliseconds,” https://media.ccc.de/v/33c3-7865-gone_in_
60_milliseconds, 2016.


https://ifttt.com
https://media.ccc.de/v/33c3-7865-gone_in_60_milliseconds
https://media.ccc.de/v/33c3-7865-gone_in_60_milliseconds

	References

