POSTER: Transforming Code to Drop Dead
Privileges

Xiaoyu Hu Jie Zhou

Spyridoula Gravani

John Criswell

BitFusion.io Inc. Department of Computer Science Department of Computer Science Department of Computer Science

University of Rochester

Abstract—To help programmers write programs that follow
Saltzer and Schroeder’s Principle of Least Privilege, modern
operating systems divide the power of the administrative user
into separate privileges which applications can enable on demand
and permanently discard when no longer needed. However, using
such privileges requires tedious reasoning of program behavior.

We present a compiler, named AutoPriv, that uses whole-
program analysis to transform programs to remove unneeded
privileges during their execution. We tested AutoPriv on several
privileged open-source programs that typically run as root. Our
results show that AutoPriv increases optimization time by 19%
on average but that transformed programs exhibit practically no
overhead.

This poster is for an accepted paper.

I. INTRODUCTION

Saltzer and Schroeder’s Principle of Least Privilege [1]
dictates that software should only have the privileges that it
needs to operate correctly. Permanently removing privileges
is especially important for programs written in type-unsafe
programming languages. If such a program has a memory
safety error, an attacker could use a code-reuse attack [2],
[3] to use privileges that should be disallowed.

To help programmers adhere to the Principle of Least
Privilege [1], modern operating systems like Linux [4] and
Windows [5] divide the power of the administrative user into
separate privileges. However, it’s difficult to manually write
code that meets the principle because determining when a pro-
gram can safely remove a privilege requires reasoning about
the program’s use of system calls across function boundaries
and compilation units. Programmers need an automated tool
that locates program points at which privileges can be disabled
permanently.

In this poster, we present a tool named AutoPriv that
transforms a program to eliminate privileges when no longer
needed. AutoPriv utilizes inter-procedural compiler analysis
to determine where privileges are used and at what program
points they can be safely removed.

II. DESIGN AND IMPLEMENTATION

AutoPriv uses iterative inter-procedural data-flow analysis.
To determine at which points in a program which privileges
can be removed, AutoPriv must determine which privileges
can still be used at each point in the program. We define
the live privileges at a program point p to be the privileges
that may still be used along some path in the program. Our

University of Rochester

University of Rochester

live privileges definition is analogous to the definition of live
variables in live variable analysis [6].

We have developed an inter-procedural, flow-insensitive,
context-insensitive live privilege analysis based on the standard
iterative data-flow analysis framework developed by Kam and
Ullman [6]; this analysis computes the live privilege sets at
the beginning and end of each basic block. Our compiler then
uses this information to locate points in a program at which the
live privilege sets change in order to locate at which program
points privileges can be safely removed.

In summary, given a program, AutoPriv will analyze the
privilege use, compute the sets of privileges that are live
on entry and exit to each basic block, add code to remove
privileges when they are no longer needed, and generate a
final executable. We implemented AutoPriv as a set of new
compiler passes for LLVM 3.7.1 [7].

III. PERFORMANCE EXPERIMENTS

We studied both AutoPriv’s performance when compiling
programs and the performance of programs transformed by
it. We used five Linux applications: ping, thttpd, sshd,
passwd, and su. We selected these programs because they
run as the root user on Unix systems in order to override
one or more of the Unix access controls.

To measure analysis time, we used the LLVM opt tool
to run our global live privilege analysis passes on each test
program. Our results show that AutoPriv induces an average
overhead of 19% across our benchmarks on optimization time.

To measure the performance overhead that AutoPriv induces
on the programs it compiles, we compiled test programs with
and without AutoPriv’s transformation passes and evaluated
their performance. Our results show that AutoPriv incurs no
overhead on program performance.

IV. CONCLUSION

This paper describes the AutoPriv compiler which analyzes
privilege use in applications and transforms them to perma-
nently remove privileges when no longer needed. AutoPriv
incurs, on average, 19% overhead during optimization and in-
duces practically no overhead in the programs that it compiles.

REFERENCES

[1] J. H. Saltzer and M. D. Schroeder, “The protection of information in
computer systems,” Proceedings of the IEEE, vol. 63, no. 9, pp. 1278—
1308, 1975.



(2]
(3]

(4]

(51

(6]
(7]

A. One, “Smashing the stack for fun and profit,” Phrack, vol. 7, November
1996. [Online]. Available: http://www.phrack.org/issues/49/14.html

R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-oriented
programming: Systems, languages, and applications,” ACM Transactions
on Information Systems Security, vol. 15, no. 1, pp. 2:1-2:34, Mar. 2012.
D. P. Bovet and M. Cesati, Understanding the LINUX Kernel, 2nd ed.
Sebastopol, CA: O’Reilly, 2003.

M. E. Russinovich and D. A. Solomon, Microsoft Windows Internals,
Fourth Edition: Microsoft Windows Server(TM) 2003, Windows XP, and
Windows 2000 (Pro-Developer). Redmond, WA, USA: Microsoft Press,
2004.

F. Nielson, H. R. Nielson, and C. Hankin, Principles of Program Analysis.
Secaucus, NJ, USA: Springer-Verlag New York, Inc., 1999.

C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis and transformation,” in Proceedings of the Conference
on Code Generation and Optimization, San Jose, CA, USA, Mar 2004,
pp. 75-88.


http://www.phrack.org/issues/49/14.html

	Introduction
	Design and Implementation
	Performance Experiments
	Conclusion
	References

