POSTER: Trapping Spectres in Speculation
Domains

Isaac Richter

Yufei Du John Criswell

Department of Electrical and Computer Engineering Department of Computer Science Department of Computer Science

University of Rochester
Rochester, NY, USA
isaac.richter @rochester.edu

Abstract—This work introduces Speculation Domains, a
method for preventing speculation from being used in Spectre
and Meltdown side-channel attacks.

I. INTRODUCTION

Modern processors speculatively execute instructions to
achieve high throughput. Instructions executed in error are
squashed, rolling back their effects. Speculation side-channel
attacks, such as Spectre [1] and Meltdown [2], leverage specu-
lative execution to cause the processor to execute instructions
that would not have been executed to load secret data into
processor registers. These attacks then leak this data to the
attacker via cache side channels.

Speculation-based attacks are dangerous because they leak
sensitive data at high bandwidth [2] and because disabling
speculation incurs a substantial performance penalty. This
work attempts to prevent speculation from being used to attack
and exfiltrate data via cache side channels utilizing either
Flush+Reload [3] or Prime+Probe [4].

II. SPECULATION DOMAINS

We propose speculation domains, a design which guarantees
that cache lines loaded in a given domain are not accessible to
code running in other domains until the instruction that caused
them to be loaded is retired without exception. If multiple
domains attempt to access the same cache line, the processor
loads the line multiple times.

Our design prevents speculative side-channel attacks [1],
[2] from leakage data via the cache by ensuring that the
speculatively-loaded line does not appear as having been
loaded by other domains. Nonetheless, by allowing loaded
lines to be accessible by all speculation domains after the load
is no longer speculative, we avoid the need for long-term data
duplication.

Our design adds speculation domains as a new instruction
set feature. All requests, both data and instruction, are tagged
with the current speculation domain of the thread making the
request. This is done for both memory requests and instruction
fetches. When any instruction commits, all cache lines it used
are promoted to the global domain. If all instructions that used
a cache line are squashed, a request is sent to the cache to evict
that line.

University of Rochester
Rochester, NY, USA
ydul4 @ur.rochester.edu

University of Rochester
Rochester, NY, USA
criswell @cs.rochester.edu

Cache tags are extended to include the speculation domain
associated with the line. When processing requests, the cache
must either match the request’s domain to that of the line,
or the line must be in the global domain. On a miss, the
speculation domain is passed along to the lower-level cache
(closer to the memory) or memory controller. The memory
system does not coalesce requests from different domains.
This can result in multiple outstanding requests for the same
physical memory. This is desired behavior: the latency of
loading the data from the lower-level cache is the same
regardless of whether code in another domain sent a request
for the same cache line.

When a line within a cache is promoted to the global
domain, any non-global instances thereof in that cache are
removed. Because writes always go to the cache upon commit,
dirty lines are always already in the global domain, so this
does not cause consistency issues. Promotions to the global
domain are transmitted down through the hierarchy (toward
the memory controller). Evictions due to squashed instructions
are also propagated, but only if no sibling cache also holds the
line under the same domain (the lower level cache tracks how
many of its immediate higher-level caches have copies of the
line, so it knows when it can evict its copy).

To handle Prime+Probe attacks [4], where the attacker first
fills the cache and then checks for evicted lines, we reserve
a logical portion of cache ways for speculatively-loaded data
(similar to dynamic partitioning, for example in SecDCP [5]).
The lines are arranged such that each domain will have
dedicated ways, preventing any collisions between domains
(and leakage of speculated loads to other speculation domains).
As with the base case, lines are still marked as non-speculative
once the related instruction is committed. If the destination set
is otherwise full, the existing cache eviction mechanism will
choose a line to evict, and re-purpose as a speculative line.

III. CONCLUSION

We believe that speculation domains will mitigate
speculation-based attacks while still enabling high perfor-
mance. We also believe that speculation domains can be used
to mitigate side channels in other processor components e.g.,
TLBs. How software can best use speculation domains is an
open question about which we hope to spark discussion.



(1]

(2]
[3]

[4]

(5]

REFERENCES

P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” 2018.

M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard,
P. Kocher, D. Genkin, Y. Yaromn, and M. Hamburg, “Meltdown,” 2018.
Y. Yarom and K. Falkner, “FLUSH+RELOAD: A high resolution,
low noise, L3 cache side-channel attack,” in Proceedings of the
23rd USENIX Security Symposium, ser. SEC’14. Berkeley, CA,
USA: USENIX Association, 2014, pp. 719-732. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2671225.2671271

D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermea-
sures: The case of AES,” in Proceedings of the 2006 The Cryptographers’
Track at the RSA Conference on Topics in Cryptology, ser. CT-RSA’06.
Berlin, Heidelberg: Springer-Verlag, 2006, pp. 1-20.

Y. Wang, A. Ferraiuolo, D. Zhang, A. C. Myers, and G. E. Suh,
“SecDCP: Secure dynamic cache partitioning for efficient timing channel
protection,” in Proceedings of the 53rd Annual Design Automation
Conference, ser. DAC *16. New York, NY, USA: ACM, 2016, pp. 74:1-
74:6. [Online]. Available: http://doi.acm.org/10.1145/2897937.2898086



