
Tutorial: Principles and Practices of Secure Crypto Coding in Java∗

Sazzadur Rahaman Na Meng Danfeng (Daphne) Yao
Department of Computer Science

Virginia Tech
{sazzad14, nm8247, danfeng}@vt.edu

Abstract—Various software libraries and frameworks provide
a variety of APIs to support secure coding. However, misusing
these APIs can cost developers tremendous time and effort,
introduce security vulnerabilities to software, and cause serious
consequences like data leakage or Denial of Service (DoS) on
servers. No prior tutorial educates people on the best practice
of secure coding, the pitfalls that should be avoided, and the
remediation of insecure code.

To increase the security awareness of developers and
improve the quality of their software products, we propose
a 90-minute tutorial to teach participants the principles and
practices of Java secure coding. In this tutorial, we will
introduce the principles of using security APIs, analyze typical
API misuse cases to explain the causes and effects. We will also
introduce a tool that we recently developed to automatically
detect API misuse in Java.

There are five parts in our tutorial. To reveal the existing
status of secure coding practice, we will first introduce the
findings in our recent study on StackOverflow posts relevant
to Java security. Second, we will discuss the recommended prin-
ciples of API usage by security experts. Third, to correlate the
principles with existing practice, we will also discuss some API
misuse examples for the hash digest, message encryption and
decryption, key generation, and SSL/TLS connection. Fourth,
we will ask participants to examine extra code examples and
discuss the security property of each example. Finally, We will
give an overview of the available tools and resources, demon-
strate a tool named RIGORITYJ that we recently developed to
automatically detect API misuse in Java. We will also help
participants install and use RIGORITYJ on their own machines
and ask them for trials.

By actively involving participants in code discussion and
tool trial, we aim to raise the security awareness among
developers, improve their secure coding capabilities, and equip
them with the tools they need for secure coding.

1. Introduction

Various software libraries or frameworks (e.g., Boun-
cyCastle [6]) provide a variety of features to enable secure
coding. For instance, Java platform defines the Java Cryptog-
raphy Architecture (JCA), which contains APIs for hashes,

∗This work has been supported by ONR Grant N00014-17-1-2498.

keys, certificates, digital signatures, and encryption [10].
Java Secure Socket Extension (JSSE) includes APIs for
standard secure communication protocols like SSL/TLS [1].
Misusing these libraries and frameworks not only slows
development time, but also leads to security vulnerabilities
in the resulting software [4], [15].

Our recent study on StackOverflow posts revealed a
worrisome reality in the software development industry [11].
Based on the discussions among developers on StackOver-
flow, we found that a substantial number of developers did
not appear to understand the concepts or implications of
security API usage. Such lack of domain knowledge creates
frustration in developers, who sometimes ended up using
APIs in easy but completely insecure ways. Additionally,
we collected substantial empirical evidence showing that
(1) the security API usage is over complicated and poorly
documented; (2) the error reporting systems of Java platform
security APIs cause confusion; and (3) the understanding
on multi-language support for secure coding is rather weak.
This indicates a strong need of better secure coding educa-
tion for developers, to raise their security awareness when
designing, implementing, and using security APIs.

Till date, the number of studies offering automatic ver-
ification for secure use of cryptography is fairly limited
(e.g., CryptoLint for Android [8], FixDroid for Android
IDE [12], RIGORITYJ [13] and CogniCrypt [17] for Java,
TaintCrypt for C/C++ [14], etc.). Moreover, there is no
prior tutorial session focusing secure cryptographic coding
practice in Java. Existing online tutorials and documents
introduce some best practices of using security APIs (e.g.,
[1], [2], [3]). Nevertheless, these documents do not include
many code examples to thoroughly demonstrate the correct
API usage, neither do they discuss or explain developers’
frequent mistakes when using the APIs. Online forums
like StackOverflow [16] contain sufficient code snippets to
demonstrate and recommend security API usage, but some
of the recommended usage is incorrect or insecure [5].

To create mass awareness, we propose a 90-minute
tutorial on the principles and practices of secure coding
with proper usage of cryptographic APIs. In this tutorial, we
will include hands-on components and audience interactions
to ensure the quality of participants’ learning experience.
Specifically, there are five parts in the tutorial.

Part I: Review of Existing Secure Coding Practices.
To emphasize the importance of secure coding practice,



we will introduce the key findings in our recent study on
StackOverflow posts [11]. The study examined the common
questions and solutions frequently discussed about Java
secure coding practice, and made observations from two
perspectives: software engineering (SE) and security. Such
findings provide actionable advices to library builders for
better API design and to application developers on avoiding
API misuses for better security.

Part II: Introduction of Secure Coding Principles.
A number of security literatures introduced various rules
to use APIs securely [1], [8], [9], [10]. We will selectively
introduce four to six well-defined, popularly-used, and easy-
to-understand rules (e.g., SSL/TLS misconfiguration, Hard-
coded keys, IVs etc). By introducing these basic important
principles, we aim to provide participants with the necessary
domain knowledge of secure coding.

Part III: Explanation of Insecure API usage. To
improve participants’ understanding of the introduced prin-
ciples, we will also present some counterexamples to explain
why they violate the general principles, and how to fix the
API misuse. For instance, a counterexample can be a case
where a password is synthesized with several predictable
components. Although the password is not hardcoded, still
the predictability can cause leaking the password. These
counterexamples compliment our instructions on the best
practices, concretize the concepts in code, and clarify the
boundaries between secure and insecure API usage.

Part IV: Discussion of Code Examples. Different from
existing online tutorials and API documentation that impart
knowledge in one way, our tutorial is unique because we aim
to establish a two-way communication between the instruc-
tors and the audience. By showing some code examples that
are secure or insecure, we will ask participants to discuss (1)
whether each example is secure or not, and (2) how to fix
problems if a case is insecure. In this way, we will guide par-
ticipants to correlate the abstract security concepts in mind
with the coding practice in life. Additionally, we can also
leverage this opportunity to check how participants digest
our instructions, and may clarify some essential concepts if
participants are confused.

Part V: Demonstration of Automatic Detectors. We
will introduce several misuse detection tools in Java (e.g.,
(e.g., FixDroid [12], CogniCrypt [17], RIGORITYJ [13],
DHS SWAMP [7]). To provide hands on experience, we
will demonstrate RIGORITYJ [13]. Given a Java program,
RIGORITYJ conducts program analysis to check whether the
code violates any of the known principles for cryptographic
operations. We will walk the participants through the pro-
cedure of installing, configuring and using RIGORITYJ to
identify insecure code.

In summary, there are three learning objectives we aim
to achieve with this tutorial:

1) To increase the security awareness in developers,
2) to improve developers’ capability of diagnosing and

fixing insecure code, and
3) to enrich developers’ hands-on experience of using

security bug detectors in the coding practice.

2. Prerequisites and Target Audience

To ensure the quality of hands-on experience, we expect
people to have the basic knowledge of Java programming.
Participants are highly recommended to bring their laptops
and try out our research tool.

Security researchers, software developers, students, and
other software professionals at all levels are welcome to at-
tend the tutorial. For the participants that have little domain
knowledge of security, our tutorial will cover a set of inter-
esting information about the principles of secure coding, the
existing status of secure coding practice, the gap between
the principles and practices, and the potential solutions to
narrow the gap (e.g., developer education and tool support).
For security experts and security library builders, this tuto-
rial will be also valuable, because it provides a platform for
people to share their expertise and learn about the needs of
better software support for secure coding practice.

References

[1] Java Secure Socket Extension (JSSE) Reference Guide.
https://docs.oracle.com/javase/8/docs/technotes/guides/security/
jsse/JSSERefGuide.html#Introduction.

[2] Security Tips. https://developer.android.com/training/articles/
security-tips.html#Crypto.

[3] Security with HTTPS and SSL. https://developer.android.com/
training/articles/security-ssl.html.

[4] State of software security. https://www.
veracode.com/sites/default/files/Resources/Reports/
state-of-software-security-volume-7-veracode-report.pdf, 2016.

[5] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky.
You get where you’re looking for: The impact of information sources
on code security. In IEEE S&P, pages 289–305, 2016.

[6] Bouncy castle. https://www.bouncycastle.org.
[7] Welcome to the SWAMP. https://continuousassurance.org, 2018.
[8] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel. An empirical

study of cryptographic misuse in Android applications. In ACM CCS,
pages 73–84, 2013.

[9] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes,
and S. Fahl. Stack Overflow considered harmful? The impact of
copy&paste on Android application security. In IEEE S&P, 2017.

[10] Java cryptography architecture. http://docs.oracle.com/javase/7/docs/
technotes/guides/security/crypto/CryptoSpec.html.

[11] N. Meng, S. Nagy, D. Yao, W. Zhuang, and G. A. Argoty. Secure
Coding Practices in Java: Challenges and Vulnerabilities. In ACM
ICSE, 2018.

[12] D. C. Nguyen, D. Wermke, Y. Acar, M. Backes, C. Weir, and S. Fahl.
A Stitch in Time: Supporting Android Developers in Writing Secure
Code. In ACM CCS, pages 1065–1077. ACM, 2017.

[13] S. Rahaman, Y. Xiao, K. Tian, F. Shaon, M. Kantarcioglu, and D. Yao.
RIGORITYJ: Deployment-quality detection of java cryptographic vul-
nerabilities. arXiv preprint arXiv:1806.06881, 2018.

[14] S. Rahaman and D. Yao. Program analysis of cryptographic imple-
mentations for security. In IEEE SecDev, pages 61–68, 2017.

[15] F. Y. Rashid. Library misuse exposes leading Java plat-
forms to attack. http://www.infoworld.com/article/3003197/security/
library-misuse-exposes-leading-java-platforms-to-attack.html, 2017.

[16] StackOverflow. https://stackoverflow.com.
[17] S. K. et al. Cognicrypt: supporting developers in using cryptography.

In Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering, ASE 2017, pages 931–936, 2017.


