Tutorial: Secure Your Things: Secure Development
of IoT Software with Frama-C

Allan Blanchard
Inria Lille — Nord Europe
Villeneuve d’Ascq, France
Allan.Blanchard @inria.fr

Abstract—Among distributed systems, connected devices and
services, also referred to as the Internet of Things (IoT), are
becoming more and more widespread. Some of these devices are
used in security-critical domains, and even in domains that are
not necessarily critical, privacy issues may arise with devices
collecting and transmitting a lot of personal information.

It is therefore important to provide security guarantees for
the software executed by simple devices, which often do not even
provide memory protection units. This kind of guarantees can
be brought using formal verification.

In this tutorial, we focus on the use of FRAMA-C, a platform
for the analysis of C programs, to verify IoT software. We
illustrate it on several examples taken from Contiki, a lightweight
operating system for Internet of Things.

Index Terms—software verification; C programs; value analysis;
deductive verification; runtime verification; Contiki.

I. THE TOPIC

Among distributed systems, connected devices and services,
also referred to as the Internet of Things (IoT), are becoming
increasingly popular. Today, billions of such devices are al-
ready used, and this number is growing. It is anticipated that
by 2021, about 46 billions of devices will be in use.

While security-critical domains start to rely on such devices,
even in other domains that were not previously seen as
critical, privacy issues may arise with devices collecting and
transmitting personal data. Furthermore, compromised devices
can be hijacked to build botnets that can be used, for example,
for distributed denial of service attacks. Security of these
systems is then an important concern. Formal methods have
been used for years in highly critical domains to ensure safety
and security. Today they can help bring security into the IoT.

Verifying the correctness of an implementation with respect
to a formal functional specification is the strongest guarantee
we can get, however it can be hard to obtain. A more
pragmatic approach consists in relying on a combination of
formal methods to achieve an appropriate degree of guarantee:
static analyses for the absence of runtime errors, deductive
verification for functional correctness, dynamic verification for
parts that cannot be proved using deductive verification.

This work was partially supported by a grant from CPER DATA and the
project VESSEDIA, which has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No
731453.

Nikolai Kosmatov
CEA, List
Software Reliability and Security Lab
Gif-sur-Yvette, France
Nikolai.Kosmatov @cea.fr

Frédéric Loulergue
SICCS
Northern Arizona University
Flasgstaff, USA
Frederic.Loulergue @nau.edu

FRAMA-C! [1] is a source code analysis platform that aims
at conducting verification of industrial-size C code written
in ISO C99. FRAMA-C allows the user to combine different
formal methods approaches through a collection of plugins that
perform static or dynamic analysis for safety and security of
critical software. Collaboration between plugins is enabled by
their integration on top of a shared kernel and their compliance
to a common specification language: ACSL [2].

Recently FRAMA-C has been applied to the verification
of software in the context of the Internet of Things, more
specifically the verification of modules of Contiki [3], an open
source operating system for the IoT.

II. TUTORIAL OUTLINE

In addition to a general presentation of FRAMA-C and
Contiki, this tutorial is composed of three different parts
each of them presenting one analysis plugin of FRAMA-C.
Each part consists of a presentation using slides and live
demonstration, and a session of exercises. The tutorial is
structured as follows:

1) Introduction

2) Verification of the absence of runtime errors using the
plugin EVA

3) Deductive verification using the plugin WP

4) Runtime verification with the plugin E-ACSL

5) Conclusion and Further References

III. FURTHER READING

A. On FRAMA-C verification platform

The first author wrote a longer tutorial focused on WP
plugin [4]. Burghardt and Gerlach authored and regularly
update their book “AcCSL by Example” [5] giving many inter-
esting examples of specification in ACSL. Several other tutorial
papers present various analysis techniques using FRAMA-C:
deductive verification [6], runtime verification [7], [8], test
generation [9] and analysis combinations [10]. Finally, user
manuals for FRAMA-C and its different analyzers can be found
on the website http://frama-c.com.

Uhttps://frama-c.com

B. On FRAMA-C Applied to loT Verification
FRAMA-C was used to verify several modules of Contiki:

« a memory allocation module [11],
e a linked list module [12], [13],
o the AES-CCM* modules [14].

Other verification projects are in progress.

IV. BIOGRAPHIES

Allan BLANCHARD obtained his PhD in Computer Science
from the University of Orléans in 2016. He prepared his PhD
at the Software Reliability Laboratory of the CEA List.

He is interested in the analysis of concurrent code using
formal methods and more precisely deductive verification. His
current work, in the EU H2020 VESSEDIA project, is to apply
formal verification to the Contiki microkernel and its libraries,
mostly to show the absence of runtime errors. He mostly uses
FRAMA-C with the EVA and WP plugins.

He is the author of an online tutorial on deductive verifica-
tion with FRAMA-C and its WP plugin [4].

Web site: https://allan-blanchard.fr

Nikolai KOSMATOV got a PhD in Mathematics in 2001
jointly from Saint-Petersburg State University and University
of Besancon. He works as an expert researcher-engineer at
CEA List. His research interests include software testing,
formal verification, combinations between static and dynamic
analysis techniques and runtime verification. He co-authored
two patents and more than 50 scientific papers in international
conferences and journals. He is the main author of the online
testing service pathcrawler-online.com and contributed to the
development of several other tools.

Nikolai organized several international events (TAP 2015
conference, CP meets Verification workshop at CP 2016,
CSTVA workshop at CP 2017, USE workshop at ICST 2018),
as well as several successful tutorials on testing and verifi-
cation (at iFM, ISSRE, ASE, SAC, TAP, HPCS, RV, ICTSS,
ZINC, TAROT). He is co-responsible of the working group
on software testing (MTV2) of the French CNRS network
on software engineering (GDR GPL) and organizes its annual
workshops.

Web site: http://nikolai.kosmatov.free.fr/

Frédéric LOULERGUE obtained his PhD in Computer Sci-
ence from the University of Orléans in 2000 and his Ha-
bilitation in Computer Science from Université Paris Val-de-
Marne in 2004. He is currently a full professor at Northern
Arizona University, Flagstaff, USA. His research interest are
the practical and formal aspects of the design, implementation
and application, in particular to large-scale data-intensive
software, of structured parallel programming languages and
libraries, as well as applied formal methods and cyber security
in this broad context. Software associated to his research
work include Bulk Synchronous Parallel ML (BSML) and
the SYDPACC framework for the systematic development of
programs for scalable computing.

He co-organized several international workshops on High-

Level Parallel Programming and Applications (HLPP) and
on Practical Aspects of High-Level Parallel Programming
(PAPP), and the PAPP ACM SAC Track in 2016 and 2017.
He co-chaired the Formal Approaches to Parallel and Dis-
tributed System (4PAD) symposium in 2016 and 2018. He is a
member of the editorial board of Scalable Computing: Practice
and Experience. He was associate director of the Laboratory
of Algorithms, Complexity and Logic (LACL), and asso-
ciate director of the Laboratoire d’Informatique Fondamentale
d’Orléans (LIFO). He founded and lead the Logic Modeling
and Verification (LMV) research team at LIFO (2015-16).

Web site: http://frederic.loulergue.eu

REFERENCES

[1] F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski,
“Frama-C: A software analysis perspective,” Formal Asp. Comput.,
vol. 27, no. 3, pp. 573-609, 2015.

[2] P. Baudin, P. Cuoq, J. C. Fillidtre, C. Marché, B. Monate, Y. Moy,
and V. Prevosto, ACSL: ANSI/ISO C Specification Language. [Online].
Available: http://frama-c.com/acsl.html

[3] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - A lightweight and
flexible operating system for tiny networked sensors,” in Proc. of the
29th Annual IEEE Conference on Local Computer Networks (LCN
2004). 1EEE Computer Society, 2004, pp. 455-462.

[4] A. Blanchard, “Introduction to C program proof using Frama-C
and its WP plugin,” december 2017. [Online]. Available: https:
//allan-blanchard.fr/publis/frama- c- wp- tutorial-en.pdf

[5] J. Burghardt and J. Gerlach, “ACSL by example,” 2018. [Online].
Available: https://github.com/fraunhoferfokus/acsl-by-example

[6] N. Kosmatov, V. Prevosto, and J. Signoles, “A lesson on proof of
programs with Frama-C. Invited tutorial paper,” in Proc. of the 7th
International Conference on Tests and Proofs (TAP 2013), ser. LNCS,
vol. 7942. Springer, 2013, pp. 168-177.

[71 N. Kosmatov and J. Signoles, “A lesson on runtime assertion checking
with Frama-C,” in Proc. of the 4th International Conference on Runtime
Verification (RV 2013), ser. LNCS, vol. 8174. Springer, 2013, pp. 386—
399.

[8] ——, “Runtime assertion checking and its combinations with static and
dynamic analyses — tutorial synopsis,” in Proc. of the Sth International
Conference on Tests and Proofs (TAP 2014), ser. LNCS, vol. 8570.
Springer, 2014, pp. 165-168.

[9] N. Kosmatov, N. Williams, B. Botella, M. Roger, and O. Chebaro, “A
lesson on structural testing with PathCrawler-online.com,” in Proc. of
the 6th International Conference on Tests and Proofs (TAP 2012), ser.
LNCS, vol. 7305. Springer, 2012, pp. 169-175.

[10] N. Kosmatov and J. Signoles, “Frama-C, A collaborative framework for
C code verification: Tutorial synopsis,” in Proc. of the 16th International
Conference on Runtime Verification (RV 2016), ser. LNCS, vol. 10012.
Springer, 2016, pp. 92-115.

F. Mangano, S. Duquennoy, and N. Kosmatov, “A memory allocation
module of Contiki formally verified with Frama-C. A case study,” in
Proc. of the 11th International Conference on Risks and Security of
Internet and Systems (CRiSIS 2016), ser. LNCS, vol. 10158. Springer,
2016, pp. 114-120.

A. Blanchard, N. Kosmatov, and F. Loulergue, “Ghosts for lists: A
critical module of contiki verified in Frama-C,” in Proc. of the 10th
NASA Formal Methods Symposium (NFM 2018), ser. LNCS, vol. 10811.
Springer, 2018, pp. 37-53.

F. Loulergue, A. Blanchard, and N. Kosmatov, “Ghosts for lists: from
axiomatic to executable specifications,” in Proc. of the 12th International
Conference on Tests and Proofs (TAP 2018), ser. LNCS, vol. 10889.
Springer, 2018, pp. 177-184.

A. Peyrard, N. Kosmatov, S. Duquennoy, and S. Raza, “Towards formal
verification of Contiki OS: analysis of the AES-CCM* modules with
Frama-C,” in Proc. of the 2nd International Workshop on Recent
advances in secure management of data and resources in the loT (RED-
IoT 2018), part of the International Conference on Embedded Wireless
Systems and Networks (EWSN 2018). ACM, 2018, pp. 264-269.

[11]

[12]

[13]

[14]

