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Abstract—Among distributed systems, connected devices and
services, also referred to as the Internet of Things (IoT), are
becoming more and more widespread. Some of these devices are
used in security-critical domains, and even in domains that are
not necessarily critical, privacy issues may arise with devices
collecting and transmitting a lot of personal information.

It is therefore important to provide security guarantees for
the software executed by simple devices, which often do not even
provide memory protection units. This kind of guarantees can
be brought using formal verification.

In this tutorial, we focus on the use of FRAMA-C, a platform
for the analysis of C programs, to verify IoT software. We
illustrate it on several examples taken from Contiki, a lightweight
operating system for Internet of Things.

Index Terms—software verification; C programs; value analysis;
deductive verification; runtime verification; Contiki.

I. THE TOPIC

Among distributed systems, connected devices and services,
also referred to as the Internet of Things (IoT), are becoming
increasingly popular. Today, billions of such devices are al-
ready used, and this number is growing. It is anticipated that
by 2021, about 46 billions of devices will be in use.

While security-critical domains start to rely on such devices,
even in other domains that were not previously seen as
critical, privacy issues may arise with devices collecting and
transmitting personal data. Furthermore, compromised devices
can be hijacked to build botnets that can be used, for example,
for distributed denial of service attacks. Security of these
systems is then an important concern. Formal methods have
been used for years in highly critical domains to ensure safety
and security. Today they can help bring security into the IoT.

Verifying the correctness of an implementation with respect
to a formal functional specification is the strongest guarantee
we can get, however it can be hard to obtain. A more
pragmatic approach consists in relying on a combination of
formal methods to achieve an appropriate degree of guarantee:
static analyses for the absence of runtime errors, deductive
verification for functional correctness, dynamic verification for
parts that cannot be proved using deductive verification.
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FRAMA-C! [1] is a source code analysis platform that aims
at conducting verification of industrial-size C code written
in ISO C99. FRAMA-C allows the user to combine different
formal methods approaches through a collection of plugins that
perform static or dynamic analysis for safety and security of
critical software. Collaboration between plugins is enabled by
their integration on top of a shared kernel and their compliance
to a common specification language: ACSL [2].

Recently FRAMA-C has been applied to the verification
of software in the context of the Internet of Things, more
specifically the verification of modules of Contiki [3], an open
source operating system for the IoT.

II. TUTORIAL OUTLINE

In addition to a general presentation of FRAMA-C and
Contiki, this tutorial is composed of three different parts
each of them presenting one analysis plugin of FRAMA-C.
Each part consists of a presentation using slides and live
demonstration, and a session of exercises. The tutorial is
structured as follows:

1) Introduction

2) Verification of the absence of runtime errors using the
plugin EVA

3) Deductive verification using the plugin WP

4) Runtime verification with the plugin E-ACSL

5) Conclusion and Further References

III. FURTHER READING

A. On FRAMA-C verification platform

The first author wrote a longer tutorial focused on WP
plugin [4]. Burghardt and Gerlach authored and regularly
update their book “AcCSL by Example” [5] giving many inter-
esting examples of specification in ACSL. Several other tutorial
papers present various analysis techniques using FRAMA-C:
deductive verification [6], runtime verification [7], [8], test
generation [9] and analysis combinations [10]. Finally, user
manuals for FRAMA-C and its different analyzers can be found
on the website http://frama-c.com.

Uhttps://frama-c.com



B. On FRAMA-C Applied to loT Verification
FRAMA-C was used to verify several modules of Contiki:

« a memory allocation module [11],
e a linked list module [12], [13],
o the AES-CCM* modules [14].

Other verification projects are in progress.
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