
Tutorial: Secure Coding Practices, Automated Assessment
Tools and the SWAMP

Barton P. Miller
Computer Sciences Department

University of Wisconsin-Madison
Madison, WI 53706

bart@cs.wisc.edu

Elisa Heymann
Computer Sciences Department

University of Wisconsin-Madison
Madison, WI 53706
elisa@cs.wisc.edu

I. INTRODUCTION
Security is crucial to the software that we develop and use.

With the incredible growth of both Web and Cloud services,
security is becoming even more critical.

Securing your network is not enough. Every service that you
deploy is a window into your data center from the outside world,
and a window that could be exploited by an attacker.

This tutorial is relevant to anyone wanting to learn about
minimizing security flaws in the software they develop or
manage. We share our experiences gained from performing
vulnerability assessments of critical services and middleware.
You will learn important skills for software developers and
analysts concerned with security.

Software assurance tools – tools that scan the source or
binary code of a program to find weaknesses – are the first line
of defense in assessing the security of a software project. These
tools can catch flaws in a program that affect both the
correctness and safety of the code. The SWAMP is a open and
free facility to provide access to a large collection of tools for a
variety of languages and environments. This tutorial is also
relevant to anyone wanting to learn how to use these automated
assessment tools to minimize security flaws in the software they
develop or manage.

II. TECHNICAL TOPICS
Our tutorial focuses on the programming practices that can

lead to security vulnerabilities, and on automated tools for
finding security weaknesses. This tutorial features several
interactive secure coding quizzes where the audience will be
challenged to find as many vulnerabilities as they can in short
code fragments, based on vulnerabilities that we found in real
world software. What the audience finds (and does not find) will
then be discussed. These quizzes will motivate the following
section of the tutorial.

We will start the tutorial with some basic vocabulary
presenting terms that will help the student focus the key concepts
being taught. This will include such terms as attack surface,
impact surface, vulnerability, exploit, and mitigation.

The first major technical area of our tutorial is a presentation
of the most common vulnerabilities found in middleware and
services. Descriptions of each type of vulnerability will be
presented with examples. The examples will show how each
type of vulnerability occurs within code, pointing out how
common usage patterns for system library routines, kernel calls,

and common programming techniques can result in the
vulnerability. The coding examples are presented in C, C++,
Java, Python and Perl.

Along with the description of the vulnerabilities, we will
show how the vulnerability can be mitigated or eliminated
through the use of specific programming and design techniques.
An important part of our discussion of each vulnerable technique
is a description of the thought processes used by the attacker in
developing an exploit.

The second technical area of our tutorial is a presentation
about automated assessment tools. We will introduce the
different types of analysis tools, how these tools work, their
output and their limitations. We then talk about control flow
analysis and data flow analysis, as they are the tools’ core to
answer if certain code is safe or not.

The next section of the tutorial explains how to use different
commercial and open source tools for C/C++ and Java, and how
to process the tools’ output. For that we use simple test
applications extracted from the NIST/NSA Juliet test suite,
where each of these applications contain specific weaknesses,
and the version of the same code with the weakness fixed. The
weaknesses we address are drawn from a collection of the most
commonly occurring ones in real code, such as Relative Path
Traversal, OS Command Injection, Cross-Site Scripting (XSS),
Improper Neutralization of Script in an Error Message Web
Page, Integer Overflow, Sensitive Information Uncleared
Before Release, Uncaught Exception, and Use of Hard-coded
Password.

The last section of this tutorial shows how users can benefit
from the Software Assurance Marketplace (SWAMP)
(https://continuousassurance.org). SWAMP users can access
both commercial and open source software assessment tools.
This section will have a hands-on exercise (see section below).

III. TARGET AUDIENCE
This tutorial is targeted at developers wishing to minimize

the security flaws in the software that they develop. It covers the
defensive side of security – how to prevent problems by showing
many types of vulnerabilities that occur in real code and what
techniques can be used to prevent them, and how to use
automated analysis tools to detect flaws in their software. The
target audience for this tutorial is anyone involved with the
development, deployment, assessment, or management of
critical software.

IV. HANDS-ON EXERCISE
The tutorial will include an opportunity for the attendees to

experiment with software assurance tools available in the DHS-
funded Software Assurance Marketplace (SWAMP), an open
and free facility.

The student will progress through a structured exercise:

1. Signing up for the SWAMP or accessing it via them github,
Google, or InCommon credentials.

2. Uploading software to the SWAMP.
3. Running a variety of software assurance tools.
4. Viewing and interpreting the results.
5. Fixing problems found and iterating over the above steps.

The exercise will be packed in a VirtualBox image, which
will be available to attendees before the tutorial session (and
available on the web and memory sticks at the tutorial). The
VirtualBox image will be pre-configured and ready to run with
example code and step-by-step instructions.

Note that these exercises are newly developed to be
streamlined for time constraints of a tutorial session.

V. LEARNING OUTCOMES
The goals for this tutorial are to teach software developers

and designers to:

• Visualize code and software design from a security
perspective.

• Learn specific techniques for writing secure code.
• Learn how software assurance tools can to help improve the

security of their code.
• Learn about specific tools resources available to them and

get initial experience using these resources.

Audience prerequisites: To gain maximum benefit from this
tutorial, attendees should be familiar with the process of
developing software and at least one of the C, C++ Java or
scripting programming languages. This tutorial does not assume
any prior knowledge of security assessment or vulnerabilities.

VI. PREVIOUS TUTORIALS
Miller and Heymann teach a wide variety of tutorials on

software vulnerability assessment, secure programming, and
software assurance tools. They are constantly updating and
expanding their tutorial content.

Tutorials taught in the past year include:

• “Secure Coding Practices and Automated Assessment
Tools”. Half day. Technical University of Munich,
Germany. March 2018.

• “Secure Coding Practices and Automated Assessment
Tools”. 3 day. Hands-on. Total Soft Bank (TSB), Busan,
South Korea. November 2017.

• “Secure Coding Practices”. URISC@SC17. Denver, CO,
November 2017. (1 hour long)

• “Secure Coding Practices and Automated Assessment
Tools”. Half day. O'Reilly Security Conference, New York,
October, 2017.

• “Automated Assessment Tools: Theory and Practice”. Half
day. NFS Cybersecurity summit. Arlington, VA, August
2017. Hands-on.

• “Secure Coding Practices & Automated Assessment Tools”.
3 days. FAA. New Jersey, June 2017. Hands-on: Java
(WebGoat) and C (filetool) with the SWAMP.

• “Secure Coding Practices & Automated Assessment Tools”.
Half day. OSCON: O'Reilly Open Source Convention,
Austin, TX, May 2017.

• “Secure Coding Practices and Automated Assessment
Tools”. Two days. Card Access Engineering, Utah, April
2017.

• “Secure Coding Practices and Automated Assessment
Tools”. Half day. Universidad de la República. Montevideo,
Uruguay, March 2017.

In additional, Miller and Heymann are developing an online
curriculum cover these topics. The prototype, under-
development website can be seen at:
http://research.cs.wisc.edu/mist/SoftwareSecurityCourse/

Barton Miller is the Vilas Distinguished Achievement and the
Amar & Belinder Sohi Professor of Computer Science at the
University of Wisconsin-Madison. He is Chief Scientist for the
DHS Software Assurance Marketplace research facility and is
Software Assurance Lead on the NSF Cybersecurity Center of
Excellence. In addition, he co-directs the MIST software
vulnerability assessment project in collaboration with his
colleagues at the Autonomous University of Barcelona. He also
leads the Paradyn Parallel Performance Tool project, which is
investigating performance and instrumentation technologies for
parallel and distributed applications and systems. His research
interests include systems security, binary and malicious code
analysis and instrumentation extreme scale systems, parallel and
distributed program measurement and debugging, and mobile
computing. Miller's research is supported by the U.S. Dept. of
Homeland Security, U.S. Dept. of Energy, National Science
Foundation, NATO, and various corporations.

In 1988, Miller founded the field of Fuzz random software
testing, which is the foundation of many security and software
engineering disciplines. In 1992, Miller (working with his then-
student, Prof. Jeffrey Hollingsworth), founded the field of
dynamic binary code instrumentation and coined the term
"dynamic instrumentation". Dynamic instrumentation forms the
basis for his current efforts in malware analysis and
instrumentation.

Elisa Heymann is a Senior Scientist on the NSF Cybersecurity
Center of Excellence at the University of Wisconsin-Madison,
and an Associate Professor at the Autonomous University of
Barcelona. She co-directs the MIST software vulnerability
assessment at the Autonomous University of Barcelona, Spain.

She was also in charge of the Grid/Cloud security group at the
UAB, and participated in two major Grid European Projects:
EGI-InSPIRE and European Middleware Initiative (EMI).
Heymann's research interests include security and resource
management for Grid and Cloud environments. Her research is
supported by the NSF, Spanish government, the European
Commission, and NATO.

	I. Introduction
	II. Technical Topics
	III. Target Audience
	IV. Hands-on Exercise
	V. Learning Outcomes
	VI. Previous Tutorials

