Tutorial: Continuous Verification
of Critical Software

Mike Dodds
Galois Inc.
miked @ galois.com

Abstract—This tutorial will describe how to integrate for-
mal verification of cryptographic code into real-world software
development. We will base the tutorial on our work with
Amazon verifying critical portions of s2n, the open-source TLS
implementation used in many Amazon services. This work shows
it is now practical to integrate verification of critical software
into developer workflows. Our aim with this tutorial is to enable
others to apply this approach to their security-critical projects.
For this reason, we will focus on the pragmatic aspects of
integrating and maintaining a continuous verification system.

I. ToriC

This tutorial will describe how to integrate formal verifi-
cation of cryptographic code into real-world software devel-
opment. We will base the tutorial on our work with Amazon
to verify critical portions of s2n, the open source TLS im-
plementation used in numerous Amazon services. Our proofs
guarantee that critical cryptographic algorithms in s2n are
correctly implemented. Furthermore, at each change to the
code, proofs are automatically checked and guarantees re-
established with little to no interaction from developers. The
result is continuous verification, ensuring that code remains
correct throughout the lifetime of the software.

The verification approach we will describe makes use of
an open source tool called the Software Analysis Workbench
(SAW, available at https://saw.galois.com). This tool allows
translation from concrete software implementations into math-
ematical models of software behavior, followed by the use of
automated theorem provers to show that the extracted behavior
satisfies user-provided properties for all possible inputs. The
result is equivalent to performing exhaustive testing of the
same properties, but whereas exhaustive testing for algorithms
over large data spaces is intractable, the behavioral correctness
proofs often complete in less than a few minutes.

More specifically, we have verified the s2n implementation
of HMAC, DRBG, and the TLS handshake. For each of
these, SAW proves the C implementation is memory safe and
matches the specification given in the RFC standard. This rules
out several important categories of attack — for one example,
attacks against the TLS handshake state machine.

Our work with Amazon shows that verification of core
pieces of commercial software is now practical and can be
integrated into developer workflows. Our aim with this tutorial
is to enable others to apply this approach to their security-
critical projects. For this reason, we will focus on the prag-

Stephen Magill
Galois Inc.
stephen @ galois.com

Aaron Tomb
Galois Inc.
atomb @ galois.com

matic aspects of implementing and maintaining a continuous
verification system.

II. TUTORIAL FORMAT

Our tutorial will be broken into two parts:
o Verifying cryptography using SAW [90mins]

— We will sketch the basics of formal verification:
specification, logic, reasoning about programs.

— We will introduce the types of algorithms SAW
can verify, and describe how to set up scripts to
orchestrate the verification of cryptographic code.

— We will show examples of cryptographic algorithms
as specified in RFCs and NIST documents, and
compare them with more formal descriptions in our
specification language, Cryptol.

— We will include group and individual exercises based
on modifying these example algorithms.

o Building robust continuous verification systems [90min]

— We will describe the process of building robust,
continually-checked proofs.

— Using s2n examples, we will show how code changes
can be automatically accommodated and point out
which code changes require proof script updates.

— We will show how to set this process up in continu-
ous integration systems, using Travis CI as a concrete
example.

— We will include group and individual exercises that
involve running SAW proofs on a test CI envi-
ronment and updating proofs in response to code
changes.

III. TARGET AUDIENCE

The audience for this tutorial is developers working on
security-critical and/or cryptographic code. We suggest the
following prerequisite knowledge:

o Experience in C / C++ / Java, or similar [necessary]

« Knowledge of security-focused engineering [necessary]
o Knowledge of cryptographic primitives [useful]

o Knowledge of mathematical logic [useful]

« Experience with continuous integration tools [useful]


miked@galois.com
stephen@galois.com
atomb@galois.com

IV. LEARNING OUTCOMES

An understanding of what types of software can be
automatically verified.

Experience using the basic features of SAW to perform
verification.

Knowledge of how to organize proofs to be robust to code
changes.

Knowledge of how to integrate SAW with Travis and
other CI environments.

V. RELATED MATERIAL

From Testing to Proof Using Symbolic Execution, Aaron
Tomb, Galois Inc. Tutorial at StrangeLoop 2017.
https://www.thestrangeloop.com/2017/
from-testing-to-proof-using-symbolic-execution.html
Assuring Crypto Code with Automated Reasoning, Aaron
Tomb, Galois Inc. Talk at QCon 2017.
https://www.infoq.com/presentations/cryptography-reasoning
Verifying s2n HMAC with SAW, Joey Dodds, Galois Inc.
Blog post, 2016.
https://galois.com/blog/2016/09/verifying-s2n-hmac-with-saw/


https://www.thestrangeloop.com/2017/from-testing-to-proof-using-symbolic-execution.html
https://www.thestrangeloop.com/2017/from-testing-to-proof-using-symbolic-execution.html
https://www.infoq.com/presentations/cryptography-reasoning
https://galois.com/blog/2016/09/verifying-s2n-hmac-with-saw/

	Topic
	Tutorial Format
	Target Audience
	Learning outcomes
	Related Material

